Omics shed light on the mechanisms of petroleum‐contaminated soil remediation: When biochar meets nitrogen

Author:

Kong Dexu1,Liu Zhe2,Wu Juan3

Affiliation:

1. College of Marine Life Sciences Ocean University of China Qingdao Shandong People's Republic of China

2. School of Environmental Science and Engineering Shandong University Jinan Shandong People's Republic of China

3. School of Geography and Ocean Science Nanjing University Nanjing Jiangsu People's Republic of China

Abstract

AbstractDecontamination of oil‐affected soil is an urgent worldwide issue. In this study, a microcosm experiment was conducted to explore the effect of combined utilization of urea and biochar on oil‐contamination remediation in an eastern China oil‐field soil and explored their impact on soil physicochemical properties, organic pollutants degrading‐related enzyme and functional genes, microbiome, and metabolome. Then, a pot experiment was conducted to verify the impact of the remediation experiment. Results showed that a combined application of biochar and nitrogen reduced 78.6% of total petroleum hydrocarbons in soil. Combined treatment enhanced soil dehydrogenase and catalase activities, alkB, and CYP gene abundances relative to Control. Moreover, nitrogen input reduced soil microbial α‐diversity, while improving the relative abundances of Alcanivorax and Pseudogym. In addition, the pathways of glyoxylate and dicarboxylate metabolism, naphthalene and anthracene degradation, butanoate metabolism, pyruvate metabolism, and glycolysis or gluconeogenesis were up‐regulated in combined treatment relative to Control. Besides, both biochar and nitrogen addition can increase the number of edges and clustering coefficient of the microbial network, and improve the network robustness. The pot experiment showed that combined treatments enhanced ryegrass shoot length, root length, and biomass by 57.8%, 38.5%, and 42.8%, respectively. Overall, this study proved the feasibility of combined biochar and urea co‐application in remedying oil‐contaminated soil and shed light on the inner mechanism.

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3