Optimization design of supply chain network based on BP neural network performance evaluation and feedback mechanism

Author:

Wu Yao1,Liu Weiwei1ORCID

Affiliation:

1. Mechanical Engineering Shenyang University of Technology Shenyang China

Abstract

SummaryThis paper proposes a supply chain network design method suitable for multi‐product and multi‐inventory models, and uses the improved BP neural network to evaluate and provide feedback on the collaborative performance of the supply chain, adjusting the supply chain network design scheme on time. In the context of the Internet of Things (IoT) in manufacturing, it has been found that supply chain operations are difficult to meet personalized customer needs with high precision and quality. Therefore, we adopted a dynamic library strategy, supply chain network optimization model, hybrid algorithm, and the improved BP neural network to solve the above problems. First, this paper designs a corresponding inventory strategy selection mechanism for the various ordering methods of retailers in the manufacturing IoT environment. Based on this, we have constructed a dual objective model for a sustainable supply chain network to minimize total cost and maximize customer satisfaction. Second, we have developed a hybrid improved Grey Wolf and Whale Algorithm (OLDGWOA) that can accurately solve the above model. The hybrid algorithm divides the population into two parts through opposition‐based learning, and then we use the improved grey wolf algorithm and whale algorithm to solve the two populations, and seek the optimal solution in the results, resulting in a hybrid algorithm. Finally, we constructed a supply chain performance evaluation model and feedback mechanism based on the improved BP neural network to adjust inventory strategies and network design at any time. We also validated the developed model and algorithm through numerical examples, and the results showed that: (1) the hybrid algorithm has certain advantages in search and solution speed, (2) the advantages of supply chain network design based on supply chain performance evaluation and feedback mechanisms, and (3) the trade‐off between ordering methods and inventory strategies, as well as the trade‐off between location and inventory strategies.

Publisher

Wiley

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3