A novel high reactive initiator system of vinyl‐substituted hydridopolycarbosilane (VHPCS) for lower curing temperature and higher ceramic yields

Author:

Ma Hanyu1,Cao Biwen2,Guo Wenxi2,Huang Zheng1,Wang Ruibin1,Wan Liqiang1ORCID

Affiliation:

1. Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering East China University of Science and Technology Shanghai China

2. Xi‘an Aerospace Composite Materials Institute Xi'an Shaanxi China

Abstract

AbstractVinyl‐substituted hydridopolycarbosilane (VHPCS) is widely studied for its low viscosity, abundance of active functional groups, rapid curing, and high ceramic yield. The curing reactions mainly involve the free radical polymerization of vinyl and hydrosilylation reactions, but these reactions typically require high temperatures such as 160–250°C. The curing behavior of VHPCS‐17 with a tert‐butyl peroxybenzoate/Nickel acetylacetonate (TBPB/NIAA) system is investigated using differential scanning calorimetry and in situ Fourier transform infrared. The properties of VHPCS‐17 with different initiator systems and VHPCS with different vinyl contents (under TBPB/NIAA system) are studied using thermogravimetric analysis and x‐ray diffraction. The results demonstrate that the TBPB/NIAA system can facilitate the free radical polymerization of vinyl; moreover, this system decreases the peak temperature of the curing reaction from 251 to 141°C and increases the ceramic yield from 80.49% to 89.88%. The ceramic yield of cured VHPCS increases gradually, reaching 89.88% when the vinyl content is 17%. The grain size of β‐SiC decreases continuously with the increase in vinyl content, while the high‐temperature oxidation‐resistant properties of SiC ceramics obtained from different VHPCSs are not negatively affected.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3