Soy protein isolate/MXene decorated acidified carbon paper interlayer for long‐cycling Li–S batteries

Author:

Chen Siying1,Chen Dongdong2,Yang Zhuohong1,Liu Ju1,Lin Jiamian1,Xie Zhuang3ORCID,Yang Yu1

Affiliation:

1. Key Laboratory for Bio‐based Materials and Energy of Ministry of Education College of Materials and Energy, South China Agricultural University Guangzhou China

2. Guangdong Kingbali New Material Co., Ltd Huizhou City Guangdong Province China

3. School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat‐sen University Guangzhou China

Abstract

AbstractThe terrible shuttling of lithium polysulfides (LiPSs) is a major obstacle for commercializing lithium–sulfur (Li–S) batteries as high‐performance energy storage systems. In this study, a carbon‐based interlayer with effective suppression capability on the shuttle effect is developed by simply coating a well‐dispersed mixture of soybean protein isolate/MXene onto the acidified carbon paper (ACP). The resultant composite interlayer (SM@ACP) is able to synergistically diminish the shuttle effect through chemical adsorption and physical blocking. Meanwhile, this interlayer displays excellent conductivity and facilitates the diffusion of Li ions due to the composite coating to promote both electron/ion conduction as well as the porous structure of ACP. Benefiting from the unique properties of the composite interlayer, the as‐assembled Li–S batteries with SM@ACP interlayers show a great improvement in the cycling stability and rate performance, delivering a very low‐capacity decay rate of 0.071% per cycle at 0.5 C even after 800 cycles. This work provides a feasible route to realize rational design and commercial mass production of desirable interlayers for promoting the commercialization of Li–S batteries.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3