Entropic barrier theory of polymer melting

Author:

Muthukumar Murugappan1ORCID

Affiliation:

1. Department of Polymer Science and Engineering University of Massachusetts Amherst Massachusetts USA

Abstract

AbstractWe present a theory of melting kinetics of semicrystalline polymers at temperatures above the equilibrium melting temperature, by accounting for conformational entropy of chains during melting. We have derived free energy landscapes for escape of individual chains from a lamella into the amorphous phase as a function of the characteristics of the initial lamella, such as the lamellar thickness, number of chain folds, fold‐ and lateral‐surface free energies, and mean energy of a monomer inside the lamella. We show that melting of lamellae is always accompanied by a free energy barrier which is entirely entropic in origin. In terms of the parameters characterizing the lamellae and the extent of superheating, closed‐form formulas are presented for the equilibrium melting temperature, driving force for crystallization, free energy barrier height, average expulsion time of a single chain from a lamella, and the melting velocity of lamellae. The present entropic barrier theory predicts that the dependence of melting velocity on superheating is nonlinear and non‐Arrhenius, in qualitative agreement with experimental observations reported in the literature. The derived formulas open an opportunity to further explore the role of various molecular features of semicrystalline polymers on their melting kinetics.

Funder

Division of Materials Research

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3