Combined analytical and molecular dynamics model of electrocaloric effect in poly(VDF‐co‐TrFE) copolymer

Author:

Sultanov Vadim I.1ORCID,Atrazhev Vadim V.1ORCID,Dmitriev Dmitry V.1ORCID

Affiliation:

1. N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Science Moscow Russia

Abstract

AbstractA combined analytical and molecular dynamics model for the electrocaloric effect in ferroelectric poly(vinylidene difluoride‐co‐trifluoroethylene) copolymer (poly(VDF‐co‐TrFE)) is developed. The model calculates the polymer polarization, , and temperature change under adiabatic electric field variation, , as functions of temperature. An analytical component of the model is based on the Landau phenomenological theory adapted for modeling of the first order phase transitions in a polymer crystal from a ferroelectric β phase to a paraelectric conformationally disordered (condis) phase. Parameters of the free energy functional are calibrated through molecular dynamics simulations of poly(VDF‐co‐TrFE) perfect crystal. Random orientation and the scatter of the phase transition temperature for various crystallites in a real amorphous‐crystalline polymer are incorporated into the model. Comparison of the model prediction with experimental data shows good agreement for while the model overestimates the value of by approximately 2.5 times. We attribute this discrepancy to the presence of structural defects in real polymer crystallites, which reduces the entropy change under the phase transition compared to the perfect crystal simulated in our molecular dynamics approach. The theoretical limit of calculated by the model indicates that can be increased up to 3 times compared to the currently observed experimental value of .

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3