RAFT emulsion polymerization of methyl methacrylate mediated by protonated poly(2‐(dimethylamino)ethyl methacrylate) macromolecular chain transfer agent: A mechanism study

Author:

Wang Chen1,Zhang Jie1,Zhao Hanying1ORCID

Affiliation:

1. College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education Nankai University Tianjin China

Abstract

AbstractSurfactant‐free reversible addition‐fragmentation transfer (RAFT)‐mediated emulsion polymerization has been used in the synthesis of latex particles. Although this method has been developed for some time, some detailed mechanisms are not clear. Herein, RAFT emulsion polymerization of methyl methacrylate (MMA) mediated by protonated poly(2‐(dimethylamino)ethyl methacrylate) (H+‐PDMAEMA) macromolecular chain transfer agent (macro‐CTA) is studied. The effects of the molar ratios of MMA/macro‐CTA and initiator/macro‐CTA, and the macro‐CTA chain length on the emulsion polymerizations are investigated. At the nucleation stage, H+‐PDMAEMA‐CTA is chain extended with MMA dissolved in aqueous phase; and when the length of PMMA block is above a critical length, the formed amphiphilic block copolymer (BCP) chains self‐assemble into micellar particles. The nucleation time in the emulsion polymerization is strongly dependent on the chain length of H+‐PDMAEMA‐CTA, and the molar ratio of free radical initiator/macro‐CTA. The emulsion polymerization rate is in direct proportion to the molar ratio of free radical initiator/macro‐CTA. The size and the size distribution of the latex particles can be tuned through control of the macro‐CTA chain length and MMA/macro‐CTA molar ratio. Monodispersed latex particles can be synthesized under proper conditions. It is expected that well‐defined latex particles with a variety of hydrophilic polymers (or biomacromolecules) on the surfaces can be synthesized by this approach.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3