Mechanisms of damage and fracture of aramid fibers: Focus on the role of microfibril cooperativity in fracture toughness

Author:

Richard Clotilde123,Bresson Bruno1,Bès Maxime12,Schittecatte Laura1,Le Roux Solène1,Didane Nizar3,Bataille François3,Joannès Sébastien2,Marcellan Alba14ORCID

Affiliation:

1. Sciences et Ingénierie de La Matière Molle, ESPCI Paris, CNRS, Sobonne Université PSL University Paris France

2. Mines Paris PSL University, Centre des Matériaux Paris France

3. Manufacture Française des Pneumatiques Michelin Clermont‐Ferrand France

4. Institut Universitaire de France

Abstract

AbstractPushing the limits of synthetic polymers in terms of stiffness and strength, aromatic polyamide fibers–like Kevlar®–are used for demanding applications in the form of fiber assemblies as ropes. The unique mechanical performance of aramid fiber is intimately linked to its hierarchical structure and orientation, induced during the spinning process. Surprisingly, after nearly 60 years of heavy use, very little is known about damage mechanisms and rational explanation of such high resistance. We report an experimental investigation of the fiber damage mechanisms at the single fiber scale (diameter ≅ 10 μm) with the aim to establish a link with the microstructure. Damage mechanisms and crack propagation are observed in situ for the first time and unveil a widespread damage over the entire length of the fiber in the form of a network of transverse and longitudinal cracks. These observations make it possible to draw a novel scenario of fracture that mitigates the small strain failure hypothesis. To shed light on the crucial role of microfibril cooperativity in fracture toughness, a slight twist is applied to the single fiber to promote tortuosity and frictional contacts between microfibrils. Statistical fracture analysis demonstrated the beneficial impact of such torsion on early failure events, since lowest fracture stresses are shifted to higher stresses.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3