Stereospecific radical polymerization of methacrylate bearing oxazolidone structure and improvement of glass transition temperature of urethane methacrylate copolymers

Author:

Yoshinaga Yuki1,Yoshida Yoshiaki12ORCID

Affiliation:

1. Department of Materials Science, Faculty of Engineering Kyushu Institute of Technology Kitakyushu Fukuoka Japan

2. Collaborative Research Centre for Green Materials on Environmental Technology Kyushu Institute of Technology Kitakyushu Fukuoka Japan

Abstract

AbstractWe synthesized the novel methacrylate monomer bearing an oxazolidone structure (M1) and performed radical polymerization of M1 by traditional procedures. The glass transition temperature (Tg) of the obtained polymer (P1) was a significantly high value compared to that of poly(methyl methacrylate) and typical poly(urethane methacrylate)s. The copolymers of M1 and monofunctional urethane methacrylate derived from 2‐hydroxyethyl methacrylate and phenyl isocyanate (M2) exhibited a linear rise of the Tg values depending on the composition ratio of M1. The NMR analysis and the estimation of monomer reactivity ratio and Qe values suggested that the improvement of glass transition temperature resulted from a stereoregularity, meaning a syndiotacticity of the copolymers improved with increasing the composition ratio of M1. Furthermore, the thermal curing reaction of M1 or M2 with bifunctional urethane acrylate successfully proceeded, then the Tg value of the cured product from M1 was much higher than that from M2.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Acid Gas Capture by Nitrogen Heterocycle Ring Expansion;The Journal of Physical Chemistry A;2023-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3