Self‐healing and reprocessing of saturated hydroxyl‐terminated polybutadiene‐based networks enabled by dynamic covalent chemistry

Author:

Lopez Lara Jessica1,Zayas Manuel S.1,Blankenship Jacob1,Bates Christopher M.1234,Self Jeffrey L.5ORCID,Read de Alaniz Javier13ORCID

Affiliation:

1. Department of Chemistry and Biochemistry University of California Santa Barbara California USA

2. Materials Department University of California Santa Barbara California USA

3. Materials Research Laboratory University of California Santa Barbara California USA

4. Department of Chemical Engineering University of California Santa Barbara California USA

5. School for Engineering of Matter Transport, and Energy, Arizona State University Tempe Arizona USA

Abstract

AbstractHydroxyl‐terminated polybutadiene (HTPB) is found in many applications due to its ease of manufacturing, useful mechanical properties over a wide temperature range, and reactive hydroxyl chain ends. Typically, HTPB is crosslinked with isocyanates to form polyurethane thermosets. Limitations of this approach include the use of toxic isocyanates and the oxidative instability of backbone alkenes. In this work, saturated HTPB is used to form reprocessable covalent adaptable networks that are capable of stress relaxation and reprocessing, without relying on isocyanates or unstable alkenes. This approach introduces dynamic chemistry to the HTPB network via chain extension and subsequent crosslinking with 4‐methyl caprolactone (4mCL) and a novel bislactone crosslinker. Using benzenesulfonic acid (BSA) as a transesterification catalyst, stress relaxation times range from 150 to 8 min at temperatures of 70 to 100 °C. Despite crosslinking, these networks behave elastically, as evidenced by strain‐at‐break values of 93% for pristine samples, and dynamically, as shown by a strain‐at‐break of 72% after reprocessing the damaged samples. Shape reprogramming is also demonstrated by straining the crosslinked networks and heating to elevated temperatures where bond exchange occurs. These findings illustrate the advantageous properties that can be achieved by using cheap commodity building blocks to achieve dynamic properties. We anticipate that valorizing commodity polymers into reprocessable thermosets will be of utility in applications that lack other viable recycling pathways.

Funder

Office of Naval Research

National Science Foundation

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3