Impact of ring structure and conjugation on the dielectric properties of polyimides at a high frequency of 10–40 GHz

Author:

Wu Meng‐Hsuan1,Chang Chieh‐Yuan1,Liu Yu2,Chen Wen‐Chang23,Lin Yan‐Cheng13ORCID

Affiliation:

1. Department of Chemical Engineering National Cheng Kung University Tainan Taiwan

2. Department of Chemical Engineering National Taiwan University Taipei Taiwan

3. Advanced Research Center for Green Materials Science and Technology National Taiwan University Taipei Taiwan

Abstract

AbstractPolyimides (PIs) are widely used materials due to their high thermal stability and potentially low dielectric constant (Dk) and dissipation factor (Df). However, Dk and Df values tend to increase at higher frequencies. Therefore, there is a significant need to reduce the Dk and Df values of PIs, which is the main purpose of this study. This research considers multiple factors, including the ring structures and conjugations on the conformation of the PI backbone. The effects of five‐membered and six‐membered PIs and the conjugated length of benzene and naphthalene structures in the repeating units on the thermomechanical and dielectric properties are systematically investigated. As a result, the PI with a six‐membered imide contributes to higher thermal stability, with a glass transition temperature higher than 350 °C, a thermal decomposition point of 529 °C, and a lower Dk of 2.7–2.8. Still, it exhibits a lower molecular weight than that of a five‐membered imide. On the other hand, PIs with esterified structures show an extremely low Df value, 0.002–0.005. This situation can be attributed to the vital correlation between the Df and the volumetric dipole moment. This study also presents the different properties arising from ring structures and conjugations. Meanwhile, the relationships between Dk and volumetric polarizability and between Df and volumetric dipole moment are confirmed. This work provides a guideline for the structure−dielectric relationship of PI at a high frequency of 10–40 GHz.

Funder

Ministry of Education

National Cheng Kung University

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3