Excellent dielectric and actuated strain properties in CCTOx@BT(1−x)@KH560/NR system via a tunable BaTiO3 interfacial buffer layer

Author:

Guo Dandan1,Liu Xiaowei1,Zhang Aolin2,Ruan Mengnan1ORCID,Liu Zhifeng1,Wang Zhe3

Affiliation:

1. School of Materials Science and Engineering Tianjin Chengjian University Tianjin China

2. Tianjin Jinmao Chunhua Smart Energy Technology Co., Ltd) Tianjin China

3. School of Environmental and Municipal Engineering Tianjin Chengjian University Tianjin China

Abstract

AbstractDielectric elastomers (DEs) require high drive voltages to obtain large actuated strain, which limits their application in the biological field. In this work, we enhanced the dielectric properties of natural rubber (NR) composites by using core–shell structured (CaCu3Ti4O12)x@(BaTiO3)(1−x) (CCTOx@BT(1−x)) high‐dielectric particles with an buffer layer, and adjusted the thickness of the BT buffer layer by adjusting the addition of titanate during the preparation process, and then observed the relationship between the dielectric properties of NR composites and the thickness of the BT buffer layer. In addition, we modified the CCTO0.75@BT0.25 fillers surface with silane coupling agent KH560 to enhance the interfacial interaction between the inorganic fillers and polymeric matrix to obtain better dispersion and greater dielectric properties. As a result of the optimization of the CCTO0.75@BT0.25@KH560 structure, the actuated strain performance is greatly improved. The actuated strain of 5 per hundred rubber (phr) CCTO0.75@BT0.25@KH560/NR is 16.3% at 74.03 kV/mm, which is 6.52 times higher than the actuated strain obtained by NR (2.5%) at 50.28 kV/mm. This work presents a method to optimize the structure of core–shell fillers by modulating the buffer layer, and provides a new idea for further preparation of dielectric elastomer materials with large actuated strain at low voltage.

Funder

Tianjin Municipal Science and Technology Program

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3