Effect of surfactant type on oxygen barrier behavior of polyvinyl alcohol/α‐zirconium phosphate nanocomposites

Author:

Lei Fan1,Feng Minsheng1,Li Ying1,Li Jiang2ORCID,Sue Hung‐Jue3

Affiliation:

1. School of Mechanical Engineering, Chengdu University Chengdu Sichuan China

2. State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu Sichuan China

3. Polymer Technology Center, Department of Materials Science and Engineering, Texas A&M University College Station Texas USA

Abstract

AbstractSurfactants used to exfoliate and disperse nanoparticles are expected to have an impact on polymer nanocomposite properties. In this work, both ionic tetrabutylammonium hydroxide (TBA) and amphiphilic polyoxyalkyleneamine (M1000) surfactants were used to exfoliate α‐zirconium phosphate (ZrP) in polyvinyl alcohol (PVA) matrix through simple solution blending. The oxygen barrier properties of the nanocomposites were investigated as a function of ZrP content based on the above two surfactant types. At a low ZrP loading level (≤2.4 vol%), regardless of the surfactant type, the ZrP nanoplatelets in PVA matrix do indeed create a “torturous pathway” to improve barrier properties even though the crystallinity in PVA/ZrP‐M1000 system is decreased. In addition, the PVA/ZrP‐TBA films exhibit excellent transparency as good as the neat PVA films. Furthermore, it is found that the high molecular weight amphiphilic M1000 surfactant is less effective than the low molecular weight ionic TBA surfactant in dispersion and exfoliation of ZrP in PVA. This relative incompatibility of ZrP‐M1000 compared to ZrP‐TBA in PVA leads to its dramatic drop in oxygen barrier properties. This facile aqueous solution blending technique is eco‐sustainable and expected to facilitate the preparation of effective polymer nanocomposites for barrier properties applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3