A facile method to fabricate multifunctional polyvinyl alcohol mineralized hydrogels with high strength and adaptable shape

Author:

Wang Lujie1,Zhang Yubiao2,Shen Hao1,Peng Hao2,Zhou Jinping1ORCID

Affiliation:

1. Hubei Engineering Center of Natural Polymers‐based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, and College of Chemistry and Molecular Sciences Wuhan University Wuhan China

2. Department of Orthopedics Renmin Hospital of Wuhan University Wuhan China

Abstract

AbstractHydrogel‐based materials are widely used in many fields, but most of them compared to tendons with the same water content do not exhibit high toughness, strength or fatigue resistance, which limits their application. The Hofmeister effect can adjust the mechanical properties of hydrogels by ions affecting the aggregation of polymer chains. Herein, we prepared a bioactivated hydrogel through simply mixing polyvinyl alcohol (PVA) and Na2CO3 aqueous solutions. PVA chains are aggregated by strong hydrogen bonds between CO32− and OH, at which stage the hydrogel is soft and easy to shape. Further salting out promotes the formation of crystal microphase of PVA chain, resulting in high mechanical strength and excellent toughness. The existence of Na2CO3 endow the hydrogel with conductivity, exhibits high and stable sensitivity in strain sensing, and could be used to monitor human actions. On the basis of this method, Ca2+ was added to prepare mineralized PVA hydrogels, which had high stability and long‐term swelling resistance in different ionic solutions. In vitro cell experiment, hydrogel had obvious effect of promoting bone cell proliferation and calcium deposition. This work provides a facile and feasible method for preparing bionic hydrogels with high strength, toughness, and adaptable shape.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3