Synthesis and characterization of statistical and block copolymers of n‐hexyl isocyanate and 2‐chloroethyl isocyanate via coordination polymerization

Author:

Mantzara D.1,Katara A.1,Panteli M.1,Stavrakaki I. G.1,Plachouras N. V.1,Choinopoulos I.1,Pitsikalis M.1ORCID

Affiliation:

1. Department of Chemistry, Industrial Chemistry Laboratory National and Kapodistrian University of Athens Athens Greece

Abstract

AbstractStatistical and block copolymers of n‐hexyl isocyanate (HIC) and 2‐chloroethyl isocyanate (ClEtIC) were synthesized via cοοrdination polymerization employing the half‐titanocene complex [(η5‐C5H5)((S)‐2‐Bu‐O)TiCl2] as initiator. The complex, bearing a chiral substituent, led to optically active products, as confirmed by circular dichroism measurements. The molecular characterization of all products was carried out by NMR and IR spectroscopy and size exclusion chromatography (SEC), while their thermal stability was investigated through differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and differential thermogravimetry (DTG). The reactivity ratios of the two monomers were determined using various graphical methods, as well as the COPOINT program, according to the terminal copolymerization model. Structural parameters, such as the dyad monomer sequences and the mean sequence lengths were calculated as well. In addition, the kinetics of the thermal degradation of the statistical copolymers was studied, and the activation energies of the thermal degradation were calculated employing the Kissinger, Ozawa–Flynn–Wall (OFW), and Kissinger–Akahira–Sunose (KAS) methods. The block copolymers were synthesized by sequential addition of monomers starting from the polymerization of HIC. Well‐defined products were obtained in a controlled way as revealed by SEC, IR, and NMR measurements.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3