Combining parallelized emulsion formation and sequential droplet splitting for large‐scale polymer microgel production

Author:

Vigogne Michelle1,Neuendorf Talika A.1,Bernhardt Ricardo2,Thiele Julian13ORCID

Affiliation:

1. Institute of Physical Chemistry and Polymer Physics Leibniz Insitute of Polymer Research Dresden Dresden Germany

2. Institute of Polymer Materials Leibniz Insitute of Polymer Research Dresden Dresden Germany

3. Institute of Chemistry Otto von Guericke University Magdeburg Magdeburg Germany

Abstract

AbstractWith the rise of particle‐based material systems in life and materials sciences over the past years, high‐throughput microfluidics has gained tremendous interest as a simple fabrication method for large quantities of tailored emulsions and microparticles. Here, we present the fabrication of microfluidic systems that combine parallelized droplet formation with sequential droplet splitting by 3D printing via projection‐microstereolithography for large‐scale production of water‐in‐oil emulsions and polymer microparticles. The process of droplet splitting is investigated in a 3D‐printed single‐channel, flow‐focusing device and then integrated into a microfluidic system with N = 3 × 20 parallelized channels with individual channel cross‐sections of 60 μm. The arrangement of the integrated functional microfluidic elements is evaluated for different orientations to the 3D printing direction. Furthermore, emulsion droplet size adjustment for flow‐focused and parallelized microfluidic systems is studied. For a proof‐of‐concept, the 3D‐printed microfluidic system is used to fabricate water‐in‐oil emulsions and fluorescently labeled, thermally crosslinked poly(acrylamide) microparticles. With that, our platform provides a straightforward and time‐efficient path toward microgel production in the size range of 140–170 μm on a milliliter‐per‐hour scale combining droplet formation parallelization and three integrated droplet splitting stages.

Funder

Deutsche Forschungsgemeinschaft

H2020 European Research Council

Volkswagen Foundation

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3