A hexaazatriphenylene‐based porous organic polymer for high performance supercapacitor

Author:

Xu Peiwen1,Ouyang Shan1,Bai Qiaoshuang1,Ma Qian2,Zhu Youlong1ORCID

Affiliation:

1. Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry Sun Yat‐sen University Guangzhou China

2. Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University Guangzhou China

Abstract

AbstractPorous organic polymers (POPs) with high physiochemical stability and pseudocapacitive activity are crucial for supercapacitors with high specific capacitance and long cycle life. We report herein a hexaazatrinaphthylene‐based POP (HPOP‐1) for high‐performance supercapacitor by introducing redox‐active hexaazatrinaphthylene (HATN) moiety through Sonogashira–Hagihara coupling reaction. HATN moiety can undergo a proton‐induced electron transfer redox reaction, which endows HPOP‐1 with high pseudocapacitive activity. As electrode materials for supercapacitor application, HPOP‐1 exhibits high specific capacitance (667 F g−1 at 0.5 A g−1) and long‐term cyclic stability (90% capacitance retention after 10,000 cycles at 5 A g−1) in a three‐electrode system with 1 M H2SO4 as the electrolyte. In addition, HPOP‐1 also exhibits a specific capacitance of 376 F g−1 at 0.5 A g−1 in 1 M KOH electrolyte. An asymmetric supercapacitor was further fabricated with HPOP‐1 as negative electrode and rGO as positive electrode, respectively. The device delivers a specific capacitance of 63 F g−1 at 0.5 A g−1 and a rate performance of 37 F g−1 at 5 A g−1. Our work provides a facile approach for the design and preparation of pseudocapacitive POPs with high specific capacitance and long cycle life.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

Guangzhou Municipal Science and Technology Bureau

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3