Synchronously improved toughness and dielectric properties of cyanate ester resins via modification with biobased poly(N‐phenylmaleimide‐co‐limonene)

Author:

Shen Quanbing1,Chen Yan1,Wang Li1,Chen Dong1ORCID,Ma Yuhong12,Yang Wantai123

Affiliation:

1. State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China

2. Key Laboratory of Carbon Fiber and Functional Polymers of the Ministry of Education, college of Materials Science and Engineering Beijing University of Chemical Technology Beijing China

3. Beijing Advanced Innovation Centre for Soft Matter Science and Engineering Beijing China

Abstract

AbstractHigh‐performance cyanate ester (CE) resins have attracted intensive interests due to low‐k and heat resistant properties. However, the extreme high curing temperature and inherent brittleness severely limit their practical application. Herein, novel biobased poly(N‐phenylmaleimide‐co‐limonene) (PML) microspheres were specially designed and synthesized by self‐stabilized precipitation polymerization, which could simultaneously serve as effective curing agents and toughening modifiers for 2,2‐bis(4‐cyanatophenyl) propane (BADCy). The high density of unreacted endocyclic vinyl groups in PML could effectively react with BADCy, leading to lower curing temperature and good interfacial compatibility. Benefitting from both the weakly polarizable flexible chains and the highly crosslinked semi‐interpenetrating network formed during the curing process, BADCy/PML resins exhibited highly enhanced toughness and reduced dielectric constant (ε). Specifically, the BADCy/PML resins showed minimum values of ε and dielectric loss of 2.61 and 0.0032 at 106 Hz, much lower than BADCy resins (2.88, 0.0052). More importantly, a maximum impact strength of 15.6 kJ/m2 was achieved at 10 wt% loading of PML, which was 86% higher than BADCy resin. In summary, this work developed a novel strategy to simultaneously improve toughness and dielectric properties of CE resins using bio‐based PML copolymer, which have great potential in the fields of electronics and information technology.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3