Stiffening and softening of freshly prepared and aged CTA, PTMSP, and PIM‐1 films exposed to volatile compounds

Author:

Durd'áková Tereza‐Markéta1ORCID,Hrdlička Zdeněk2ORCID,Král Martin1ORCID,Budd Peter M.3ORCID,Harrison Wayne J.3,Friess Karel1ORCID,Vopička Ondřej1ORCID

Affiliation:

1. Department of Physical Chemistry University of Chemistry and Technology Prague Czech Republic

2. Department of Polymers University of Chemistry and Technology Prague Czech Republic

3. Department of Chemistry The University of Manchester Manchester UK

Abstract

AbstractGlassy polymers stiffen or soften when exposed to volatile compounds, depending on the specific combination of polymer compound and the specimen history. Relevant to the long‐term applicability of the separation membranes, three common membrane glassy polymers are studied in this work. Freshly prepared and 2‐years aged films from cellulose triacetate (CTA), poly[1‐(trimethylsilyl)‐1‐propyne] (PTMSP), and the archetypal polymer of intrinsic microporosity (PIM‐1) were tested using isothermal Dynamic Mechanical Analysis (DMA) at varied vapor activity. Vapors of organic compounds, in which the polymers do and do not dissolve in the liquid phase (solvents and nonsolvents), were studied at 40 °C, namely: dichloromethane (DCM, solvent), p‐xylene (solvent for PTMSP and PIM‐1), and methanol (nonsolvent). Functional groups of the mer units sensitive to the dissolution were identified using Raman spectroscopy. All aged films were stiffer than the freshly prepared ones. Stiffening prevailed for most freshly prepared film‐vapor pairs at low vapor saturations (activity < ≈0.4), except CTA and PIM‐1 in nonsolvent methanol vapors. Softening prevailed for the aged films and higher vapor saturations (activity > ≈0.6). Vapors of the solvents and nonsolvents did not show the expectable prevalence of softening and stiffening, respectively. Physical aging influenced the stiffening and softening of polymer glasses expectably.

Funder

Grantová Agentura České Republiky

Ministerstvo Školství, Mládeže a Tělovýchovy

EPSRC Centre for Doctoral Training in Technology Enhanced Chemical Synthesis

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3