Reinforcing mechanically reclaimed polyurethane foam wastes‐based elastomer with modified recycled polyester fibers

Author:

Duan Ruoxuan1,Wei Lingfei1,Coates Phil2,Kelly Adrian2,Wang Chao3,Chen Binxia1,Zhou Zehang1,Lu Canhui1ORCID

Affiliation:

1. State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China

2. Polymer IRC, Faculty of Engineering and Informatics, School of Engineering University of Bradford Bradford UK

3. National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, SINOPEC Beijing Research Institute of Chemical Industry Beijing China

Abstract

AbstractPolyurethane foams are widely used in daily life due to their superior performance. However, it is very challenging to recycle and reuse waste polyurethane foams since the three‐dimensional crosslinking network structure makes them non‐melting and insoluble. In this work, a low‐cost, green, room‐temperature solid‐state shear milling method is proposed to break the cross‐linking bonds of waste polyurethane foam (crosslinking density decreases from 0.768 to 0.489 mol dm−3). The recycled polyurethane (RPU) powders regain their thermoplastic processability. Recycled waste polyester (PET) fibers are modified through plasma treatment and used as reinforcing fillers for the reprocessed RPU elastomer. Compared to original PET fibers, modified polyester (m‐PET) fibers construct strong interfacial interactions and physical interlocks with RPU matrix, leading to significantly enhanced mechanical properties. Molecular dynamics studies demonstrate that RPU/m‐PET composites have higher cohesive energy density and lower free volume, and significantly improved compatibility, which greatly promotes stress dissipation upon stretching. This study provides a feasible strategy for the high‐value recycling of waste polymer materials.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3