Polymer blending and nanophotocatalyst loading synergy in visible light‐driven photocatalytic PES/SPSf mixed matrix membranes

Author:

Zikalala Sithembela A.1ORCID,Gumbi Nozipho N.1ORCID,Li Jianxin12ORCID,Mamba Bhekie B.12ORCID,Nxumalo Edward N.1ORCID

Affiliation:

1. Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa Pretoria South Africa

2. State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering Tiangong University Tianjin China

Abstract

AbstractThe synergy of polymer blending and loading photocatalytic titania–amorphous carbon nanotubes (TiO2–aCNT) in tailoring the morphological, surface, and optoelectrical properties of membranes is investigated. High energy band gap (Eg) polyethersulfone (PES), and low Eg sulfonated polyethersulfone (SPSf) polymer blends were loaded with TiO2–aCNT nanocomposite fillers. SEM reveals membranes consisting of a selective layer, a dense sublayer and a spongy layer with the latter two consisting of a network of nanofibers whose diameters decrease with increasing TiO2–aCNT loading. The downshifting in the wavenumbers of sulfonyl and sulfone peaks in Fourier transform infrared and Raman spectra confirms bonding of TiO2–aCNT with PES/SPSf via these groups. Blending PES with SPSf decreases the Eg of the membranes while loading TiO2–aCNT produces a second band edge corresponding to = 2.8 eV. Suppression of charge recombination in membranes is realized at 1.2 filler wt.%. Charge separation occurrs via shuttling of the positive holes to the aCNTs and valence band of TiO2 while electrons are shuttled to the conduction bands of PES and SPSf. Electron impedance spectroscopy shows TiO2–aCNT loading reduces polymer membrane resistance to charge transport. Dye degradation up to 85% is realized under direct sunlight irradiation accompanied by mineralization.

Funder

Sasol

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3