SwinRes: A hybrid model that effectively diagnoses COVID‐19 through x‐ray lung images

Author:

He Xuanlong1,Yang Hong1,Xu Jipan1,Mu Hongbo1ORCID

Affiliation:

1. College of Science Northeast Forestry University Harbin People's Republic of China

Abstract

AbstractCOVID‐19 has been ravaging the world for a long time, and although its effects are currently the same as those of a cold or a fever, timely diagnosis of COVID‐19 in the elderly and in patients with related illnesses is still a matter of great urgency. To address this challenge, we propose a model that combines the strengths of the Swin Transformer and ResNet34 architectures to efficiently diagnose COVID‐19 in elderly and vulnerable patients. In this paper, we design a model that integrates Swin transformer and resnet34, which not only integrates the advantages of transformer and CNN but also achieves excellent performance in this image classification problem. Moreover, a pre‐processing method is also proposed to increase the accuracy of the model to 99.08%. In this paper, experiments were conducted on Kaggle's publicly available three‐classification and four‐classification datasets, respectively, and on the three main evaluation metrics of Accuracy, Precision, and Recall, the first dataset obtained 98.81%, 99.49%, and 97.99%, while the second dataset obtained 88.82%, 88.92%, and 86.38%. These findings highlight the validity and potential of our proposed model for diagnosing the presence or absence of COVID‐19 in elderly and vulnerable patients.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3