Effect of glass fiber and polyester thickness on the ballistic velocity limit of glass fiber reinforced plastics

Author:

Lei Di1,Wang Jie12ORCID,Qiao Yakun1,Nie Shuyan1,Wei Zhen1,Gong Liangfei3,Wang Jianmin4,Liu Zhanfang1

Affiliation:

1. College of Aerospace Engineering Chongqing University Chongqing China

2. Key Laboratory of Advanced Intelligent Protective Equipment Technology, Ministry of Education Hebei University of Technology Tianjin China

3. State Key Laboratory of Mountain Bridge and Tunnel Engineering Chongqing Jiaotong University Chongqing China

4. Medical Center of Army Chongqing China

Abstract

AbstractGlass fiber reinforced plastics (GFRPs) is a key material for the outer protecting layer of ships as well as for energy storage tanks. Its ballistic and blast resistance is closely related to the inclusion structure of its glass fiber and polyester matrix, however, the related detailed studies have not been reported. In this paper, ballistic shooting tests and finite element simulations are both employed to investigate the ballistic limit velocities (V50) of GFRPs and reveal the effects of glass fiber layers and the polyester matrix thickness on the V50. The results show that the V50 of GFRPs is essentially linearly related to the thickness of the target plate for a given number of glass fiber layers. An increase in the number of glass fiber layers enhances the overall V50 value of GFRPs, but the linear relationship with the thickness remains unchanged. The target plate with more layers of glass fiber interacts with the projectile for a longer time, resulting in the debonding of the fiber and the resin matrix. The resin around the crater loses its support and then produces irregular cracks. Based on energy conservation, a theoretical model for predicting the V50 of GFRPs with considering the effects of glass fiber and polyester matrix is proposed. After comparing the results of theoretical calculations with experimental and simulation data, the relationship equations between the key parameters (ballistic strength) in the model and the number of fiber layers and target plate thickness are finally given. These findings can provide support for the design of ballistic GFRPs.Highlights Ballistic velocity limit (V50) of glass fiber reinforced plastics (GFRPs) obtained by experiment and finite element simulation Tuning the V50 of GFRPs by designing the number of glass fiber and polyester thickness. Proposed a theoretical model for predicting the V50 of GFRPs.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3