Fractional analysis of unsteady magnetohydrodynamics Jeffrey flow over an infinite vertical plate in the presence of Hall current

Author:

Abbas Shajar1ORCID,Nazar Mudassar1ORCID

Affiliation:

1. Centre for Advanced Studies in Pure and Applied Mathematics Bahauddin Zakariya University Multan Multan Pakistan

Abstract

The impact of Hall current on the multiphase thermal transfer of an incompressible electrically conductive Jeffrey flow over an infinitely vertical plate when heat absorption and chemical reaction are present has been examined. Partial differential equations have been used to describe the process, accounting for heat and mass transfer effects. This study uses extended Fourier's and Fick's laws together with the recently announced constant proportional Caputo (CPC) fractional operator. The fractional model is converted into a nondimensional form by applying some appropriate quantities. The nondimensional produced fractional model for momentum, heat, and diffusion equations based on the CPC fractional operator has been calculated semi‐analytically by applying the Laplace method. The Mathcad 15 software to sketch the graphs for several factors, like the Grashof number, mass Grashof number, Schmidt number, Prandtl number, Hall, and magnetic field parameters, is used to describe the velocity profile. Additionally, a graphical explanation is provided for the influence of the appeared parameters, particularly the effect of the fractional parameters. It is concluded that the result of the fluid model developed by the generalized constitutive relations is more accurate and generalized than the results of the artificially contracted fractional model. A fractional derivative is therefore the ideal option to achieve controlled concentration, temperature, and velocity. The current study is immediately relevant to geophysical, cosmically fluid dynamics, medical, biological, and any other processes that are significantly enhanced by a low gas density and a high magnetic field.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3