Affiliation:
1. Biology Department Woods Hole Oceanographic Institution Woods Hole Massachusetts USA
2. Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge Massachusetts USA
Abstract
AbstractSpatial population synchrony, defined as spatial covariation in population density fluctuations, exists across different temporal and spatial scales. Determining the degree of spatial synchrony is useful for inferring environmental drivers of population variability in the wake of climate change. In this study, we applied novel statistical methods to detect spatial synchrony patterns of Calanus finmarchicus on the Northeast U.S. Shelf at multiple spatiotemporal scales using unevenly distributed data. Our results reveal that C. finmarchicus subpopulations connected by advection are not necessarily in synchrony, indicating that the degree of synchrony is likely influenced by heterogeneity of local habitats. In addition, regionally synchronous environmental conditions (e.g., sea surface temperature) may not play as significant a role in influencing subregional population dynamics as was previously hypothesized. Overlooking the spatial heterogeneity of synchronous patterns at different time scales could lead to erroneous inferences of potential environmental drivers responsible for C. finmarchicus variability.
Funder
National Oceanic and Atmospheric Administration
U.S. Department of Defense
National Defense Science and Engineering Graduate
Subject
Aquatic Science,Oceanography