Differing local‐scale responses of Bolivian Amazon forest ecotones to middle Holocene drought based upon multiproxy soil data

Author:

Hill James1ORCID,Black Stuart1,Soto Daniel2,Chavez Ezequiel2,Vos Vincent3,Mayle Francis1

Affiliation:

1. Department of Geography and Environmental Science University of Reading Reading UK

2. Museo de Historia Natural Noel Kempff Mercado Santa Cruz de la Sierra Santa Cruz Bolivia

3. Universidad Autónoma de Beni Riberalta Beni Bolivia

Abstract

ABSTRACTUncertainty remains over local‐scale responses of ecotonal Amazonian forests to middle Holocene drying due to the scarcity, and coarse spatial resolution, of lacustrine pollen records. This paper examines the palaeoecological potential of soil phytoliths, stable carbon isotopes and charcoal for capturing local‐scale ecotonal responses of different types of Bolivian Amazonian forest to middle Holocene climate change. Soil pits 1 m deep were dug at ecotones between rainforest, dry forest, Chaco woodland and savannah, and sampled at 5–10 cm resolution. Both phytolith and stable carbon isotope records indicate stability of dry forest–savannah ecotones over the last ca. 6000 years, despite middle Holocene drought, revealing the dominance of edaphic factors over climate in controlling this type of ecotone. In contrast, δ13C data reveal that rainforest–savannah ecotones were more responsive to climate change, with rainforest likely replaced by drought‐tolerant dry forest or savannah vegetation during the mid‐Holocene, consistent with regional‐scale lacustrine pollen records. However, such shifts are not apparent in most of our phytolith records due to insufficient taxonomic resolution in differentiating rainforest from dry forest. Charcoal data show that ecotonal dry forests experienced greater fire activity than rainforests and that recent high fire activity at all forest sites is unprecedented since at least the middle Holocene.

Funder

Natural Environment Research Council

Publisher

Wiley

Subject

Paleontology,Earth and Planetary Sciences (miscellaneous),Arts and Humanities (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3