Predicting the effects of mutations on protein solubility using graph convolution network and protein language model representation

Author:

Wang Jing12ORCID,Chen Sheng2,Yuan Qianmu2,Chen Jianwen2,Li Danping3,Wang Lei4,Yang Yuedong2

Affiliation:

1. Guangzhou institute of technology Xidian University Guangzhou China

2. School of Computer Science and Engineering Sun Yat‐sen University Guangzhou China

3. School of Telecommunications Engineering Xidian University Xi'an China

4. School of Electronic Engineering Xidian University Xi'an China

Abstract

AbstractSolubility is one of the most important properties of protein. Protein solubility can be greatly changed by single amino acid mutations and the reduced protein solubility could lead to diseases. Since experimental methods to determine solubility are time‐consuming and expensive, in‐silico methods have been developed to predict the protein solubility changes caused by mutations mostly through protein evolution information. However, these methods are slow since it takes long time to obtain evolution information through multiple sequence alignment. In addition, these methods are of low performance because they do not fully utilize protein 3D structures due to a lack of experimental structures for most proteins. Here, we proposed a sequence‐based method DeepMutSol to predict solubility change from residual mutations based on the Graph Convolutional Neural Network (GCN), where the protein graph was initiated according to predicted protein structure from Alphafold2, and the nodes (residues) were represented by protein language embeddings. To circumvent the small data of solubility changes, we further pretrained the model over absolute protein solubility. DeepMutSol was shown to outperform state‐of‐the‐art methods in benchmark tests. In addition, we applied the method to clinically relevant genes from the ClinVar database and the predicted solubility changes were shown able to separate pathogenic mutations. All of the data sets and the source code are available at https://github.com/biomed-AI/DeepMutSol.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Computational Mathematics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3