Electronic structure of Li1,2,3+,0,– and nature of the bonding in Li2,3+,0,–

Author:

Dunning Thom H.1ORCID,Xu Lu T.1ORCID

Affiliation:

1. Department of Chemistry University of Washington Seattle Washington USA

Abstract

AbstractThe current study of the small lithium molecules Li2+,0,− and Li3+,0,− focuses on the nature of the bonding in these molecules as well as their structures and energetics (bond energies, ionization energies, and electron affinities). Valence CASSCF (2s,2p) calculations incorporate nondynamical electron correlation in the calculations, while the corresponding multireference configuration interaction and coupled cluster calculations incorporate dynamical electron correlation. Treatment of nondynamical correlation is critical for properly describing the Li2,3+,0,− molecules as well as the Li anion with dynamical correlation, in general, only fine‐tuning the predictions. All lithium molecules and ions are bound, with the Li3+ and Li2+ ions being the most strongly bound, followed by Li3, Li2, Li2 and Li3. The minimum energy structures of Li3+,0,− are, respectively, an equilateral triangle, an isosceles triangle, and a linear structure. The results of SCGVB calculations are analyzed to obtain insights into the nature of the bonding in these molecules. An important finding of this work is that interstitial orbitals, a concept first put forward by McAdon and Goddard in 1985, play an essential role in the bonding of all lithium molecules considered here except for Li2. The interstitial orbitals found in the Li3+,0 molecules likely give rise to the non‐nuclear attractors/maxima observed in these molecules.

Funder

U.S. Department of Energy

Publisher

Wiley

Subject

Computational Mathematics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3