Unraveling lexical semantics in the brain: Comparing internal, external, and hybrid language models

Author:

Yang Yang123,Li Luan123,de Deyne Simon4,Li Bing5,Wang Jing123ORCID,Cai Qing123

Affiliation:

1. Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science East China Normal University Shanghai China

2. Shanghai Changning Mental Health Center Shanghai China

3. Shanghai Center for Brain Science and Brain‐Inspired Technology Shanghai China

4. School of Psychological Sciences University of Melbourne Melbourne Victoria Australia

5. UMR 9193—SCALab—Sciences Cognitives et Sciences Affectives Université de Lille, CNRS Lille France

Abstract

AbstractTo explain how the human brain represents and organizes meaning, many theoretical and computational language models have been proposed over the years, varying in their underlying computational principles and in the language samples based on which they are built. However, how well they capture the neural encoding of lexical semantics remains elusive. We used representational similarity analysis (RSA) to evaluate to what extent three models of different types explained neural responses elicited by word stimuli: an External corpus‐based word2vec model, an Internal free word association model, and a Hybrid ConceptNet model. Semantic networks were constructed using word relations computed in the three models and experimental stimuli were selected through a community detection procedure. The similarity patterns between language models and neural responses were compared at the community, exemplar, and word node levels to probe the potential hierarchical semantic structure. We found that semantic relations computed with the Internal model provided the closest approximation to the patterns of neural activation, whereas the External model did not capture neural responses as well. Compared with the exemplar and the node levels, community‐level RSA demonstrated the broadest involvement of brain regions, engaging areas critical for semantic processing, including the angular gyrus, superior frontal gyrus and a large portion of the anterior temporal lobe. The findings highlight the multidimensional semantic organization in the brain which is better captured by Internal models sensitive to multiple modalities such as word association compared with External models trained on text corpora.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3