Prediction of ovarian cancer using artificial intelligence tools

Author:

Ayyoubzadeh Seyed Mohammad12ORCID,Ahmadi Marjan3,Yazdipour Alireza Banaye145ORCID,Ghorbani‐Bidkorpeh Fatemeh6,Ahmadi Mahnaz7ORCID

Affiliation:

1. Department of Health Information Management, School of Allied Medical Sciences Tehran University of Medical Sciences Tehran Iran

2. Health Information Management Research Center Tehran University of Medical Sciences Tehran Iran

3. Department of Obstetrics and Gynecology Tehran University of Medical Sciences Tehran Iran

4. Students' Scientific Research Center (SSRC) Tehran University of Medical Sciences Tehran Iran

5. Department of Health Information Technology, School of Paramedical and Rehabilitation Sciences Mashhad University of Medical Sciences Mashhad Iran

6. Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy Shahid Beheshti University of Medical Sciences Tehran Iran

7. Medical Nanotechnology and Tissue Engineering Research Center Shahid Beheshti University of Medical Sciences Tehran Iran

Abstract

AbstractPurposeOvarian cancer is a common type of cancer and a leading cause of death in women. Therefore, accurate and fast prediction of ovarian tumors is crucial. One of the appropriate and precise methods for predicting and diagnosing this cancer is to build a model based on artificial intelligence methods. These methods provide a tool for predicting ovarian cancer according to the characteristics and conditions of each person.MethodIn this study, a data set included records related to 171 cases of benign ovarian tumors, and 178 records related to cases of ovarian cancer were analyzed. The data set contains the records of blood test results and tumor markers of the patients. After data preprocessing, including removing outliers and replacing missing values, the weight of the effective factors was determined using information gain indices and the Gini index. In the next step, predictive models were created using random forest (RF), support vector machine (SVM), decision trees (DT), and artificial neural network (ANN) models. The performance of these models was evaluated using the 10‐fold cross‐validation method using the indicators of specificity, sensitivity, accuracy, and the area under the receiver operating characteristic curve. Finally, by comparing the performance of the models, the best predictive model of ovarian cancer was selected.ResultsThe most important predictive factors were HE4, CA125, and NEU. The RF model was identified as the best predictive model, with an accuracy of more than 86%. The predictive accuracy of DT, SVM, and ANN models was estimated as 82.91%, 85.25%, and 79.35%, respectively. Various artificial intelligence (AI) tools can be used with high accuracy and sensitivity in predicting ovarian cancer.ConclusionTherefore, the use of these tools can help specialists and patients with early, easier, and less expensive diagnosis of ovarian cancer. Future studies can leverage AI to integrate image data with serum biomarkers, thereby facilitating the creation of novel models and advancing the diagnosis and treatment of ovarian cancer.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3