Plasma treated‐double layer electrospun fiber mats from thermoplastic polyurethane and gelatin for wound healing applications

Author:

Yıldırım Arzu1ORCID,Erdoğan Eray Sarper2,Caglayan Seyma3,Keskinkaya Rüya4,Turker Yurdanur5ORCID,Karbancıoğlu‐Güler Funda6,Dikmetaş Dilara Nur6,Batirel Saime7,Taygun Melek Erol8,Guner F. Seniha58ORCID

Affiliation:

1. Graduate Program of Polymer Science and Technology Istanbul Technical University Istanbul Turkey

2. Faculty of Chemical and Metallurgical Engineering, Undergraduate Program of Chemical Engineering Istanbul Technical University Istanbul Turkey

3. Faculty of Chemical and Metallurgical Engineering, Undergraduate Program of Bioengineering Yıldız Technical University Istanbul Turkey

4. Graduate Program of Chemical Engineering Istanbul Technical University Istanbul Turkey

5. Sabancı University Nanotechnology Research and Application Center (SUNUM) Tuzla Istanbul Turkey

6. Department of Food Engineering Istanbul Technical University Maslak Istanbul Turkey

7. Department of Medical Biochemistry, School of Medicine Marmara University Maltepe Istanbul Turkey

8. Department of Chemical Engineering Istanbul Technical University Maslak Istanbul Turkey

Abstract

AbstractConventional wound treatment options provide a barrier against exogenous microbial penetration but cannot simultaneously provide an antibacterial characteristic and promote healing. However, bioactive dressings can accelerate wound healing and have an antibacterial effect in addition to being able to cover and protect lesions. In this study, double‐layer thermoplastic polyurethane (TPU)‐gelatin fibrous dressings that mimic the epidermis and dermis layers of the skin were fabricated via electrospinning technique. As a bioactive agent, Hypericum perforatum oil (HPO) was utilized to impart antibacterial and therapeutic properties to the dressings. Tannic acid was also used in fiber mat formulations as a cross‐linking agent. Oxygen plasma treatment was applied as a surface activation technique to improve adhesion of TPU and gelation layers. The fiber structure of the mats was revealed by a scanning electron microscopy (SEM) study. Fourier transform infrared (FTIR) spectroscopy was used to demonstrate HPO loading onto the mats. The water vapor transmission rate (WVTR) and fluid absorbency of the mats were compared with some commercial dressings. According to these results, it can be suggested that the mats can be used for moderate to high exudative wounds. All dressings, even the control sample showed antibacterial features against both Staphylococcus aureus and Escherichia coli bacteria due to the tannic acid. In vitro wound healing assays were carried out on the plasma‐treated sample and it was observed that the sample did not negatively affect the migration and proliferation abilities of the cells which are necessary for wound healing. Overall results indicated that the plasma‐treated fibrous mat would be a good candidate as a wound dressing material having an antibacterial character.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3