Flexible organic integrated circuits free of parasitic capacitance fabricated through a simple dual self‐alignment method

Author:

Jiang Baichuan1,Han Xiao1,Che Yu1,Li Wenbin1,Zheng Hongxian1,Li Jun1,Ou Cailing1,Dou Nannan1,Han Zixiao1,Ji Tingyu1,Liu Chuanhui1,Zhao Zhiyuan23,Guo Yunlong23ORCID,Liu Yunqi23,Zhang Lei1ORCID

Affiliation:

1. Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering Nanjing University Nanjing China

2. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing China

3. School of Chemistry and Chemical Engineering University of Chinese Academy of Sciences Beijing China

Abstract

AbstractIn integrated circuits (ICs), the parasitic capacitance is one of the crucial factors that degrade the circuit dynamic performance; for instance, it reduces the operating frequency of the circuit. Eliminating the parasitic capacitance in organic transistors is notoriously challenging due to the inherent tradeoff between manufacturing costs and interlayer alignment accuracy. Here, we overcome such a limitation using a cost‐effective method for fabricating organic thin‐film transistors and rectifying diodes without redundant electrode overlaps. This is achieved by placing all electrodes horizontally and introducing sub‐100 nm gaps for separation. A representative small‐scale IC consisting of five‐stage ring oscillators based on the obtained nonparasitic transistors and diodes is fabricated on flexible substrates, which performs reliably at a low driving voltage of 1 V. Notably, the oscillator exhibits signal propagation delays of 5.8 μs per stage at a supply voltage of 20 V when utilizing pentacene as the active layer. Since parasitic capacitance has been a common challenge for all types of thin‐film transistors, our approach may pave the way toward the realization of flexible and large‐area ICs based on other emerging and highly performing semiconductors.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3