A size‐dependent energy‐based strain burst criterion

Author:

Verma Rupesh Kumar12,Nguyen Giang D.1ORCID,Karakus Murat1,Taheri Abbas13

Affiliation:

1. School of Civil Environmental and Mining Engineering University of Adelaide Adelaide Australia

2. Aurelia Metals Cobar New South Wales Australia

3. The Robert M. Buchan Department of Mining Queen's University Kingston Canada

Abstract

AbstractThis paper presents a size‐dependent energy‐based strain burst criterion linking strength, elasticity, fracture energies and specimen size effect with stress state due to changes in boundary conditions. It proposes the concept of a ‘Burst Envelope’, a surface in three‐dimensional principal stress space derived based on energy storing and dissipation characteristics of a rock sample, taking into account the size of the specimen and potential localised failure pattern. A scalar burst index is also proposed to quantify the bursting scale. To illustrate and verify its functioning, a numerical modelling framework based on the distinct element method and employing a new cohesive‐frictional contact model is used to perform virtual strain burst experiments under different polyaxial loading‐unloading scenarios, mimicking various underground excavation scenarios. The obtained results are in good agreement with the theoretical prediction of burst occurrence. On that basis, the variation of burst possibility and magnitude are investigated with key factors, including confinement level and the material's elastic, strength and fracture properties. The effect of the specimen's aspect ratio and size on the rock burst potential is elaborated and verified using virtual strain burst experiments, facilitating the linking of the proposed theoretical framework with the evaluation of in‐situ strain bursts in rock masses around underground openings.

Funder

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3