Effects of wind shear and thrust coefficient on the induction zone of a porous disk: A wind tunnel study

Author:

Ahmed Wasi Uddin1,Iungo Giacomo Valerio1ORCID

Affiliation:

1. Wind Fluids and Experiments (WindFluX) Laboratory The University of Texas at Dallas Richardson Texas USA

Abstract

AbstractNeglecting the velocity reduction in the induction zone of wind turbines can lead to overestimates of power production predictions, and, thus, of the annual energy production for a wind farm. An experimental study on the induction zone associated with wind turbine operations is performed in the boundary‐layer test section of the BLAST wind tunnel at UT Dallas using stereo particle image velocimetry. This experiment provides a detailed quantification of the wind speed decrease associated with the induction zone for two different incoming flows, namely, uniform flow and boundary layer flow. Operations of wind turbines in different regions of the power curve are modeled in the wind tunnel environment with two porous disks with a solidity of 50.4% and 32.3%, which correspond to thrust coefficients of 0.71 and 0.63, respectively. The porous disks are designed to approximate the wake velocity profiles previously measured for utility‐scale wind turbines through scanning wind LiDARs. The results show that the streamwise velocity at one rotor diameter upwind of both disks decreases 1% more for the boundary layer flow than for the uniform flow. Further, the effect of shear in front of the disk with a higher thrust coefficient can be observed until 1.75 rotor diameter upwind of the disk, whereas for the disk with a lower thrust coefficient, the effect of shear becomes negligible at 1.25 rotor diameter upwind. It is found that at one rotor diameter upwind, for both incoming flows, the disk having a higher thrust coefficient has 2% more velocity reduction than the lower‐thrust‐coefficient disk. The results suggest that the variability in wind shear and rotor thrust coefficient, which is encountered during typical operations of wind turbines, should be considered for the development of improved models for predictions of the rotor induction zone, the respective cumulative effects in the presence of multiple turbines, namely, wind farm blockage, and more accurate predictions of wind farm power capture.

Publisher

Wiley

Reference61 articles.

1. GWEC‐Global Wind Report 2022.https://gwec.net/wp-content/uploads/2022/03/GWEC-GLOBAL-WIND-REPORT-2022.pdf;2022.

2. StehlyTJ BeiterPC.2018 Cost of Wind Energy Review. NREL/TP‐5000‐78471  National Renewable Energy Laboratory (NREL) Golden CO (United States);2020.

3. Wind-Turbine and Wind-Farm Flows: A Review

4. Experimental characterization of wind turbine wakes: Wind tunnel tests and wind LiDAR measurements

5. Optimal tuning of engineering wake models through lidar measurements

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3