Anti‐inflammatory and pro‐healing effects of acetate chitosan sponge with calcium cross‐links

Author:

Chang Liu1,Shengdong Wang1,Huien Zhang1,Liping Liu1ORCID

Affiliation:

1. College of Biological and Environmental Sciences Zhejiang Wanli University Ningbo China

Abstract

AbstractChitosan, a potential material for tissue wound repair, exhibits limitations like poor solubility and low gel strength. Acetate chitosan (CA) was synthesized through ethanol precipitation, while acetate chitosan sponge (CA‐Ca) was created using the freeze‐drying method with CaCO3 as cross‐linking agents. The addition of CaCO3 enhanced the mechanical strength of the sponges formed by CA, but affected the water absorption performance of the sponge. Both CA and CA‐Ca demonstrated antioxidant properties, with CA‐Ca showing slightly higher maximal scavenging rates for DPPH and hydroxyl radicals compared to CA. Concentrations ranging from 1 to 500 μg/mL of CA and CA‐Ca exhibited a proliferative effect on L929 and RAW264.7 cells. Furthermore, both CA and CA‐Ca promoted the migration of L929 cells, with CA‐Ca showing a higher maximal healing rate within 24 h compared to the control group. Additionally, both materials reduced the levels of TNF‐αand IL‐6 in inflammatory RAW264.7 cells, thereby alleviating the inflammatory response. Moreover, CA and CA‐Ca stimulated collagen secretion in fibroblasts without inducing excessive secretion. CA sponge demonstrated the ability to accelerate in vitro coagulation, while CA‐Ca‐8 (CA:CaCO3 1:8) sponge, prepared with 2% CA, exhibited the most effective coagulation. Overall, CA‐Ca has suitable characteristics such as water absorption, coagulation, cytocompatibility, anti‐inflammatory properties, and promoting cell healing, laying the foundation for its potential clinical applications.

Publisher

Wiley

Reference46 articles.

1. Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials

2. Emerging hemostatic materials for non-compressible hemorrhage control

3. SunJH.The preparation and application of polysaccharide‐based hemostatic and antibacterial materials. Jiangsu University2022. doi:10.27170/d.cnki.gjsuu.2022.001199

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3