Performance and accuracy of cross‐section tracking methods for hydromorphological habitat assessment in wadable rivers with sparse canopy conditions

Author:

Schroff Robin1ORCID,De Cesare Giovanni1ORCID,Perona Paolo1ORCID

Affiliation:

1. Platform of Hydraulic Constructions (PL‐LCH) École Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland

Abstract

AbstractThis article investigates the performance and accuracy of continuous Real‐Time Kinematic (RTK) Global Navigation Satellite System (GNSS) position tracking for hydromorphological surveys, based on a comprehensive river restoration monitoring campaign. The aim of the research was to assess the method's suitability for efficient data collection in turbid, wadable rivers with sparse canopy conditions, and responds to the water management sector's increasing demand for efficient, low‐cost, and robust survey techniques. The methodological approach involved comparing manual, cross‐sectional water depth measurements to water depth estimations obtained by applying different interpolation methods to the continuous tracking data. The results demonstrate good agreement between both datasets (R2 = 0.77, RMSE = 0.13 m). When using a local standard deviation filter to remove noisy RTK‐GNSS measurements, estimation performance increased significantly (R2 = 0.96, RMSE = 0.06 m). The filter's influence on the hydromorphological habitat statistics mean water depth and coefficient of variation was limited but proved to be relevant for reach‐scale assessments of hydromorphological diversity. Based on a correlation analysis of >106 RTK‐GNSS position logs, we furthermore assessed the impact of tree canopy on RTK‐GNSS measurement accuracy and observed a strong influence within 6.5 m from the canopy border. Estimated accuracy deteriorated noticeably when canopy penetration exceeded 1 m, and accuracies >1 m were common beyond 4 m penetration. The study highlights the efficiency gains achieved with RTK‐GNSS tracking, and showcases its potential for hydromorphological surveys and streamgaging applications in challenging conditions, making it a promising alternative to traditional methods and remote sensing techniques.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3