Deep learning for COVID‐19 contamination analysis and prediction using ECG images on Raspberry Pi 4

Author:

Mhamdi Lotfi123ORCID,Dammak Oussama4,Cottin François23ORCID,Ben Dhaou Imed567ORCID

Affiliation:

1. Biotechnology Institute of Monastir Monastir Tunisia

2. CIAMS EA 4532, University Paris‐Saclay Orsay France

3. CIAMS EA 4532, University d'Orleans Orleans France

4. Department of Mathematics Al Lith University College, Umm Al Qura University Makkah Saudi Arabia

5. Department of Computer Science Hekma School of Engineering, Computing and Informatics, Dar Al‐Hekma University Jeddah Saudi Arabia

6. University of Turku Turku Finland

7. Department of Technology Higher Institute of Computer Sciences and Mathematics, University of Monastir Monastir Tunisia

Abstract

AbstractThis paper's primary goal is to diagnose COVID‐19 contamination based on the artificial intelligence approach automatically. We used convolutional neural network deep learning algorithm for analyzing the ECG images to detect cardiac abnormalities, consequent of the contamination by the SARS‐CoV‐2 virus, responsible for the COVID‐19 epidemic. We designed, trained, and evaluated the performance of two deep learning models (MobileNetV2 and VGG16) in detecting and distinguishing between two different classes (healthy subjects and COVID‐19 positive cases). Indeed, this virus attacks the human respiratory system, which could affect the heart system. Thus, developing a deep learning model could help for a quick and efficient diagnosis, prediction, and physician decision‐making. The performed deep learning model will be used for predicting abnormal cardiac activities consequent to the contamination by the virus. The overall classification rate achieved by the models was 99.34% and 99.67% for MobileNetV2 and VGG16, respectively. Therefore, this approach can efficiently contribute to the diagnosis of COVID‐19 contamination.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Software,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Ensemble-based Neural Network Model for Natural Disaster in 2019;2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3