Affiliation:
1. Mathematics and Science College Shanghai Normal University Shanghai China
Abstract
We consider a diffusion equation on the real line with growth rates (reaction terms) being negative in a bounded unfavorable region and bistable on two sides. The equation can be used to model a species living in a habitat with a polluted or hunting zone but still tries to survive or even spread to the whole space. Using the zero number argument, we first show the general convergence to stationary solution for any nonnegative global solutions, and then we prove a spreading–transition–vanishing trichotomy result for the asymptotic behavior of global solutions. The key point is to find a quite special stationary solution to distinguish the spreading and transition solutions. Finally, we construct precise upper and lower solutions to estimate the asymptotic speed for the spreading solution.
Funder
Natural Science Foundation of Shanghai Municipality
National Natural Science Foundation of China