Influence of thermophoretic deposition and viscous dissipation on magnetohydrodynamic flow with variable viscosity and thermal conductivity

Author:

Das Utpal Jyoti1ORCID,Majumdar Nayan Mani1ORCID,Patgiri Indushri1ORCID

Affiliation:

1. Department of Mathematics Gauhati University Guwahati Assam India

Abstract

AbstractIn this study, we numerically explore the impact of varying viscosity and thermal conductivity on a magnetohydrodynamic flow problem over a moving nonisothermal vertical plate with thermophoretic effect and viscous dissipation. The boundary conditions and flow‐regulating equations are converted into ordinary differential equations with the aid of similarity substitution. The MATLAB bvp4c solver is used to evaluate the numerical solution of the problem and it is validated by executing the numerical solution with previously published studies. The impacts of several factors, including the magnetic parameter, Eckert number, heat source parameter, thermal conductivity parameter, stratification parameter, Soret, Dufour, Prandtl number, and Schmidt number are calculated and shown graphically. Also, the skin friction coefficient, Nusselt number, and Sherwood number are calculated. Fluid velocity, temperature, and concentration significantly drop as the thermophoretic parameter and thermal stratification parameter increases. As thermal conductivity rises, it is seen that the velocity of the fluid and temperature inside the boundary layer rise as well. Also, the Soret effect drops temperature and concentration profile. The applications of this type of problem are found in the processes of nuclear reactors, corrosion of heat exchangers, lubrication theory, and so forth.

Publisher

Wiley

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3