Affiliation:
1. Department of Mathematics Gauhati University Guwahati Assam India
Abstract
AbstractIn this study, we numerically explore the impact of varying viscosity and thermal conductivity on a magnetohydrodynamic flow problem over a moving nonisothermal vertical plate with thermophoretic effect and viscous dissipation. The boundary conditions and flow‐regulating equations are converted into ordinary differential equations with the aid of similarity substitution. The MATLAB bvp4c solver is used to evaluate the numerical solution of the problem and it is validated by executing the numerical solution with previously published studies. The impacts of several factors, including the magnetic parameter, Eckert number, heat source parameter, thermal conductivity parameter, stratification parameter, Soret, Dufour, Prandtl number, and Schmidt number are calculated and shown graphically. Also, the skin friction coefficient, Nusselt number, and Sherwood number are calculated. Fluid velocity, temperature, and concentration significantly drop as the thermophoretic parameter and thermal stratification parameter increases. As thermal conductivity rises, it is seen that the velocity of the fluid and temperature inside the boundary layer rise as well. Also, the Soret effect drops temperature and concentration profile. The applications of this type of problem are found in the processes of nuclear reactors, corrosion of heat exchangers, lubrication theory, and so forth.
Subject
Fluid Flow and Transfer Processes,Condensed Matter Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献