Soil erosion and nutrient loss due to changes in rainfall intensity under different wind directions

Author:

An Miaoying123,Wei Chen Chen4,Han Yuguo12ORCID,Qu Zhixu12,Wang Xiuru12,Zhang Baozhong56

Affiliation:

1. Key Laboratory of State Forestry Administration on Soil and Water Conservation, College of Soil and Water Conservation Beijing Forestry University Beijing China

2. Forest Ecosystem Studies National Observation and Research Station Jixian Shanxi China

3. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences Ministry of Agriculture and Rural Affairs Beijing China

4. Agricultural Water Conservancy Department Changjiang River Scientific Research Institute Wuhan China

5. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin China Institute of Water Resources and Hydropower Research Beijing China

6. National Center of Efficient Irrigation Engineering and Technology Research‐Beijing Beijing China

Abstract

AbstractIn nature, wind often occurs simultaneously with rainfall, causing nutrient loss in soil and water on slopes. However, the influence of different rainfall intensities combined with different wind directions on soil erosion and nutrient loss remains unclear. This study utilized wind‐driven rainfall laboratory flume experiments to analyse the influence of different wind directions (windward, leeward and crosswind) and rainfall intensities (30, 60 and 90 mm h−1) with constant wind speed (5 m s−1) on slope runoff, sediment yield and the associated losses of different forms of N ( , ) and P ( ‐P). The response of soil erosion, N and P loss to rainfall changes with different wind directions. When the rainfall intensity was constant, runoff, sediment yield and sediment‐associated total nitrogen (TN) and total phosphorus (TP) losses on slopes showed a trend of leeward > crosswind > windless > windward, whereas runoff‐associated TN and TP losses showed a trend of windward > crosswind > windless > leeward. Runoff, sediment yield and sediment‐associated TN and TP losses on leeward slopes were 1.09–1.17, 1.25–1.44, 1.33–1.62, and 1.40–1.66 times than windless slopes. Moreover, with constant wind direction, the runoff, sediment yield and associated N and P losses increased significantly with increasing rainfall intensity. When the rainfall intensity increased from 30 to 60 and 90 mm h−1, the runoff, sediment yield and associated TN and TP losses increased 2.02–2.28, 3.65–5.35, 3.96–34.39 and 4.28–8.45 times, respectively. The effects of rainfall on soil erosion and nutrient loss were significantly greater than those of wind. The loss of different forms of N and P associated with runoff and sediment was consistent with that of TN and TP losses. However, with an increase in rainfall intensity, the growth rates of runoff, sediment yield and associated N and P losses exhibited a gradually weakening trend for all wind directions. An increase in rainfall intensity enhanced the vertical vector force of wind‐driven rainfall, which increasingly decreased the angle between the rain incidence and the normal line of the horizon; therefore, the direction of the rain erosion force gradually approached that of windless conditions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3