Constructing S‐scheme heterojunctions with tunable interfacial oxygen vacancy via UiO‐66‐NH2‐derived ZrO2‐x for efficient photocatalytic performance

Author:

Zhang Yu1,Wang Pei1ORCID,Han Gaiying1,Wang Zhaoyang1,Yu Haitao1ORCID,Li Zhenzi2,Wang Xuepeng2,Xie Ying1ORCID,Zhou Wei2ORCID

Affiliation:

1. Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science Heilongjiang University Harbin China

2. Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China

Abstract

Defects engineering is significant for photocatalytic environment remediation. To this end, visible‐light‐driven α‐Fe2O3/ZrO2‐x S‐scheme heterojunction photocatalysts with optimal oxygen vacancy (Ov) defects are successfully synthesized via a two‐step method. Compared with pristine UiO‐66‐NH2‐derived ZrO2‐x and α‐Fe2O3, the heterojunction photocatalysts exhibit a wider range of visible light response and higher efficiency in separating photogenerated electron–hole pairs. Among them, the 5% α‐Fe2O3/ZrO2‐x sample shows the best photocatalytic performance to the degradation of tetracycline (TC) (89.3%), in which the pseudo‐first‐order kinetic rate constants are 8.20 and 16.75 times that of pristine ZrO2‐x and α‐Fe2O3, respectively. The outstanding photocatalytic degradation efficiency can be attributed to both the narrow‐bandgap ZrO2‐x with visible light response and the formation of α‐Fe2O3/ZrO2‐x S‐scheme heterojunctions. During the formation of heterojunctions, the concentration of oxygen vacancies (Ov) at the interface of α‐Fe2O3/ZrO2‐xdecreases monotonically with the increasing loading of α‐Fe2O3, thereby altering the electronic structure of the photocatalyst and forming the heterojunction firmly. In addition, the high stability implies the potential applications in fields of environment.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3