Assessing the performance of group‐based trajectory modeling method to discover different patterns of medication adherence

Author:

Diop Awa12ORCID,Gupta Alind3,Mueller Sabrina4,Dron Louis5,Harari Ofir1ORCID,Berringer Heather16,Kalatharan Vinusha1,Park Jay J. H.17,Mésidor Miceline28ORCID,Talbot Denis28

Affiliation:

1. Core Clinical Sciences Inc. Vancouver British Columbia Canada

2. Département de médecine sociale et préventive Université Laval Québec Canada

3. Department of Epidemiology, Dalla Lana School of Public Health University of Toronto Toronto Ontario Canada

4. GIPAM GmbH Wismar Germany

5. Cascade Outcomes Research Inc. Vancouver British Columbia Canada

6. Department of Mathematics and Statistics University of Victoria Victoria British Columbia Canada

7. Department of Health Research Methodology, Evidence, and Impact McMaster University Hamilton Ontario Canada

8. Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec – Université Laval Québec Canada

Abstract

AbstractIt is well known that medication adherence is critical to patient outcomes and can decrease patient mortality. The Pharmacy Quality Alliance (PQA) has recognized and identified medication adherence as an important indicator of medication‐use quality. Hence, there is a need to use the right methods to assess medication adherence. The PQA has endorsed the proportion of days covered (PDC) as the primary method of measuring adherence. Although easy to calculate, the PDC has however several drawbacks as a method of measuring adherence. PDC is a deterministic approach that cannot capture the complexity of a dynamic phenomenon. Group‐based trajectory modeling (GBTM) is increasingly proposed as an alternative to capture heterogeneity in medication adherence. The main goal of this paper is to demonstrate, through a simulation study, the ability of GBTM to capture treatment adherence when compared to its deterministic PDC analogue and to the nonparametric longitudinal K‐means. A time‐varying treatment was generated as a quadratic function of time, baseline, and time‐varying covariates. Three trajectory models are considered combining a cat's cradle effect, and a rainbow effect. The performance of GBTM was compared to the PDC and longitudinal K‐means using the absolute bias, the variance, the c‐statistics, the relative bias, and the relative variance. For all explored scenarios, we find that GBTM performed better in capturing different patterns of medication adherence with lower relative bias and variance even under model misspecification than PDC and longitudinal K‐means.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3