Statistical analysis of the substitution of inorganic fibers and fillers with vegetable fibers and fillers in polystyrene composites

Author:

Ponsoni Lara Vasconcellos1,de Almeida Marina Kauling1,Madeira Kristian2,Militão Gustavo Pacheco2,Zimmermann Matheus Vinícius Gregory1ORCID

Affiliation:

1. Programa de Pós‐graduação em Ciência e Engenharia de Materiais (PPGCEM) Universidade do Extremo Sul Catarinense (UNESC) Criciúma Brazil

2. Grupo de Pesquisa em Métodos Quantitativos Aplicados (GPMEQ) Universidade do Extremo Sul Catarinense (UNESC) Criciúma Brazil

Abstract

AbstractThermoplastic composites exhibit improved mechanical performance compared to pure matrices, and the fiber is usually the most influential component of the composite. Recently, studies related to the use of vegetable fibers have grown significantly, but few works report the direct comparative between inorganic and vegetable fibers and fillers as reinforcements. In this work, composites were produced with polystyrene (PS) matrix, reinforced with inorganic fibers (glass), vegetal fibers (kapok), particulate inorganic (CaCO3), and vegetal (wood) fillers. The composites were mixed by a twin‐screw co‐rotating extruder and after processed in an injection‐molding machine. Statistical analyses of density, tensile and flexural strength abrasion resistance were made, along with analyzes of thermal deflection temperature, dynamic mechanical analysis, and scanning electron microscopy were performed on the composites. The main results indicate that all reinforcing agents (vegetal and inorganic fibers and fillers) show a regular trend of increasing the mechanical properties proven by statistical comparison, presenting p < 0.01 that proves a significant increase. By dynamic mechanical analysis, vegetable reinforcements showed a higher coefficient of effectiveness when compared to composites produced with inorganic reinforcements.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3