Kinetics of direct and water‐mediated tautomerization reactions of nucleobases at low temperatures ⩽200 K

Author:

Würmel Judith1,Simmie John M.2

Affiliation:

1. Department of Analytical Biopharmaceutical and Medical Sciences Atlantic Technological University ATU, Galway Ireland

2. School of Biological and Chemical Sciences University of Galway Galway Ireland

Abstract

AbstractDetailed chemical kinetic mechanisms for the synthesis of complex organic molecules in the interstellar medium are at an early stage of developement. That such synthesis must take place is well‐known from chemical analysis of sampled asteroids. As molecular complexity increases the number of possible structural isomers also increases with the consequence that the nascent species may adopt a different spatial arrangement, to the lowest energy one. As part of a program of investigations of the hydrogen atom transfer reaction or tautomerization of imidic acid–amide species H‐O=C‐N‐ O=C‐N‐H we have studied the kinetics for a number of nucleobases, namely cytosine, thymine and uracil where a cyclic form of tautomerism (lactim–lactam) is encountered. Together with a fourth, 5‐aza‐uracil (1,3,5‐triazine‐2,4(1H,3H)‐dione), we report on the rates of reaction at low temperatures 50–200 K for both the direct unimolecular process and the similar transformation mediated by an additional water molecule. We show that these tautomerization reactions can be categorized into three classes, and highlight the importance of quantum mechanical tunneling on the rate constants at these low temperatures. We further present some thermochemistry data, such as formation enthalpies, entropies, isobaric heat capacities and enthalpy functions.

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3