Cathode nanoarchitectonics with Na3VFe0.5Ti0.5(PO4)3: Overcoming the energy barriers of multielectron reactions for sodium‐ion batteries

Author:

Soundharrajan Vaiyapuri1,Kim Sungjin1,Nithiananth Subramanian2,Alfaruqi Muhammad H.13,Piao JunJi1,Pham Duong Tung4ORCID,Mathew Vinod1,Han Sang A.5,Kim Jung Ho5ORCID,Kim Jaekook16ORCID

Affiliation:

1. Department of Materials Science and Engineering Chonnam National University Bukgu Gwangju South Korea

2. Graduate School of Science and Technology Shizuoka University Hamamatsu Shizuoka Japan

3. Departemen Teknik Metalurgi Universitas Teknologi Sumbawa Sumbawa Indonesia

4. School of Engineering Physics Hanoi University of Science and Technology Hanoi Vietnam

5. Institute for Superconducting and Electronic Materials (ISEM), Australian Institute of Innovative Materials (AIIM) University of Wollongong North Wollongong New South Wales Australia

6. Research Center for Artificial Intelligence Assisted Ionics Based Materials Development Platform Chonnam National University Gwangju Republic of Korea

Abstract

AbstractHigh electrochemical stability and safety make Na+ superionic conductor (NASICON)‐class cathodes highly desirable for Na‐ion batteries (SIBs). However, their practical capacity is limited, leading to low specific energy. Furthermore, the low electrical conductivity combined with a decline in capacity upon prolonged cycling (>1000 cycles) related to the loss of active material‐carbon conducting contact regions contributes to moderate rate performance and cycling stability. The need for high specific energy cathodes that meet practical electrochemical requirements has prompted a search for new materials. Herein, we introduce a new carbon‐coated Na3VFe0.5Ti0.5(PO4)3 (NVFTP/C) material as a promising candidate in the NASICON family of cathodes for SIBs. With a high specific energy of ∼457 Wh kg−1 and a high Na+ insertion voltage of 3.0 V versus Na+/Na, this cathode can undergo a reversible single‐phase solid‐solution and two‐phase (de)sodiation evolution at 28 C (1 C = 174.7 mAh g−1) for up to 10,000 cycles. This study highlights the potential of utilizing low‐cost and highly efficient cathodes made from Earth‐abundant and harmless materials (Fe and Ti) with enriched Na+‐storage properties in practical SIBs.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3