Adaptive sliding mode observers‐based dissipative Hamilton finite time optimization control for the speed and tension system of reversible cold strip rolling mill

Author:

Shao Nuan1,Liu Le2ORCID,Lin Zhipeng2,Fang Yiming2

Affiliation:

1. Department of Environmental Engineering Hebei University of Environmental Engineering Qinhuangdao China

2. Key Laboratory of Intelligent Rehabilitation and Neromodulation of Hebei Province Yanshan University Qinhuangdao China

Abstract

SummaryFor the complex time‐varying uncertain nonlinear speed and tension system of reversible cold strip rolling mill, an adaptive sliding mode observers (ASMOs)‐based dissipative Hamilton finite time optimization control method is given in this article. First, the ASMOs are developed to observe rolling mill system's unmatched uncertainties, and their observation errors can converge to the origin in finite time. Second, combined with rolling mill system's physical structure characteristics, its dissipative Hamilton model is established by pre‐feedback processing, and then the dissipative Hamilton finite time controllers are designed based on interconnection and damping configuration and energy shaping method, and the system states can converge in finite time. Third, the adaptive mutation particle swarm optimization algorithm is adopted to optimize the controller parameters, which can further improve rolling mill system's control performance. Finally, the simulation results verify the validity of the given method based on actual field data.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3