Causal inference in survival analysis under deterministic missingness of confounders in register data

Author:

Ciocănea‐Teodorescu Iuliana12ORCID,Goetghebeur Els13ORCID,Waernbaum Ingeborg4ORCID,Schön Staffan5,Gabriel Erin E.16ORCID

Affiliation:

1. Department of Medical Epidemiology and Biostatistics Karolinska Institute Stockholm Sweden

2. Victor Babeş National Institute of Pathology Bucharest Romania

3. Department of Applied Mathematics, Computer Science and Statistics Ghent University Ghent Belgium

4. Department of Statistics Uppsala University Uppsala Sweden

5. Swedish Renal Registry Jönköping County Hospital Jönköping Sweden

6. Section of Biostatistics, Department of Public Health University of Copenhagen Copenhagen Denmark

Abstract

Long‐term register data offer unique opportunities to explore causal effects of treatments on time‐to‐event outcomes, in well‐characterized populations with minimum loss of follow‐up. However, the structure of the data may pose methodological challenges. Motivated by the Swedish Renal Registry and estimation of survival differences for renal replacement therapies, we focus on the particular case when an important confounder is not recorded in the early period of the register, so that the entry date to the register deterministically predicts confounder missingness. In addition, an evolving composition of the treatment arms populations, and suspected improved survival outcomes in later periods lead to informative administrative censoring, unless the entry date is appropriately accounted for. We investigate different consequences of these issues on causal effect estimation following multiple imputation of the missing covariate data. We analyse the performance of different combinations of imputation models and estimation methods for the population average survival. We further evaluate the sensitivity of our results to the nature of censoring and misspecification of fitted models. We find that an imputation model including the cumulative baseline hazard, event indicator, covariates and interactions between the cumulative baseline hazard and covariates, followed by regression standardization, leads to the best estimation results overall, in simulations. Standardization has two advantages over inverse probability of treatment weighting here: it can directly account for the informative censoring by including the entry date as a covariate in the outcome model, and allows for straightforward variance computation using readily available software.

Funder

Vetenskapsrådet

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3