Assessing the practical applicability of neural‐based point clouds registration algorithms: A comparative analysis

Author:

Fontana Simone1ORCID,Di Lauro Federica2ORCID,Sorrenti Domenico G.2

Affiliation:

1. School of Law Università degli Studi di Milano ‐ Bicocca Milano Italy

2. Department of Informatics, Systems and Communication Università degli Studi di Milano ‐ Bicocca Milano Italy

Abstract

AbstractPoint cloud registration is a vital task in three‐dimensional (3D) perception, with several different applications in robotics. Recent advancements have introduced neural‐based techniques that promise enhanced accuracy and robustness. In this paper, we thoroughly evaluate well‐known neural‐based point cloud registration methods using the Point Clouds Registration Benchmark, which was developed to cover a large variety of use cases. Our evaluation focuses on the performance of these techniques when applied to real‐complex data, which presents a more challenging and realistic scenario than the simpler experiments typically conducted by the original authors. The results reveal considerable variability in performance across different techniques, highlighting the importance of assessing algorithms in realistic settings. Notably, 3DSmoothNet emerges as a standout solution, demonstrating good and consistent results across various data sets. Its efficacy, coupled with a relatively low graphics processing unit (GPU) memory footprint, makes it a promising choice for robotics applications, even if it is not yet suitable for real‐time applications due to its execution time. Fully Convolutional Geometric Features also performs well, albeit with greater variability among data sets. PREDATOR and GeoTransformer are promising, but demand substantial GPU memory, when handling large point clouds from the Point Clouds Registration Benchmark. A notable finding concerns the performance of Fast Point Feature Histograms, which exhibit results comparable to the best approaches while demanding minimal computational resources. Overall, this comparative analysis provides valuable insights into the strengths and limitations of neural‐based registration techniques, both in terms of the quality of the results and the computational resources required. This helps researchers to make informed decisions for robotics applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3