Affiliation:
1. School of Civil Engineering Beijing Jiaotong University Beijing China
2. Department of Civil Engineering, Institute of Building Materials Tsinghua University Beijing China
Abstract
AbstractFloor‐tiling robotics are increasingly employed in on‐site building constructions owing to their remarkable benefits on rising working efficiency and reducing labor costs. In this study, a fluid–structure interaction (FSI) model of robotic tiling was established for the first time, construction parameters and adhesive properties were modified, and their influences on the quality of robotic floor‐tiling were systematically investigated by tracking the mechanical behaviors of tiles and adhesive during tiling and the interfacial defects after tiling. Results indicated that the established FSI model was feasible for assessing robotic tiling quality with a deviation of less than 2%. The adhesive extruded horizontally was evenly distributed in cylindrical strips. An increase in the number of extrusion pipes slightly improved the tiling quality. Compared with the leveling loads of compression and vertical vibration, shear vibration could effectively eliminate tile rebounding and enlarge the contact area of tile–adhesive by up to 135.85%. Moderate increases in the amplitude and frequency of shear vibration resulted in lower rebounding and larger contact areas. An appropriate increase of yield stress heightened tiling quality by keeping the extrusive appearance of the adhesive, increasing slightly tile rebounding and enlarging the contact area of tile–adhesive to 0.625 m2. As yield stress was excessively high, tremendous elastic deformations of adhesive led to remarkable tile rebounding and small contact areas of 0.375 m2.
Funder
Fundamental Research Funds for the Central Universities