ZNF263 cooperates with ZNF31 to promote the drug resistance and EMT of pancreatic cancer through transactivating RNF126

Author:

Zhang Jiawei1,Chen Chuanping2,Geng Qilong3,Li Haoyu3,Wu Mengcheng1,Chan Boyuan3,Wang Shiyang4,Sheng Weiwei1ORCID

Affiliation:

1. Department of General Surgery The First Affiliated Hospital of Anhui Medical University Hefei Anhui China

2. Department of Pharmacy The First Affiliated Hospital of Anhui Medical University Hefei Anhui China

3. Department of Clinical Medicine, The First Clinical College Anhui Medical University Hefei Anhui China

4. Department of Geriatric Surgery, The First Hospital China Medical University Shenyang China

Abstract

AbstractThe poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is attribute to the aggressive local invasion, distant metastasis and drug resistance of PDAC patients, which was strongly accelerated by epithelial–mesenchymal transition (EMT). In current study, we systematically investigate the role of ZNF263/RNF126 axis in the initiation of EMT in PDAC in vitro and vivo. ZNF263 is firstly identified as a novel transactivation factor of RNF126. Both ZNF263 and RNF126 were overexpressed in PDAC tissues, which were associated with multiple advanced clinical stages and poor prognosis of PDAC patients. ZNF263 overexpression promoted cell proliferation, drug resistance and EMT in vitro via activating RNF126 following by the upregulation of Cyclin D1, N‐cad, and MMP9, and the downregulation of E‐cad, p21, and p27. ZNF263 silencing contributed to the opposite phenotype. Mechanistically, ZNF263 transactivated RNF126 via binding to its promoter. Further investigations revealed that ZNF263 interacted with ZNF31 to coregulate the transcription of RNF126, which in turn promoted ubiquitination‐mediated degradation of PTEN. The downregulation of PTEN activated AKT/Cyclin D1 and AKT/GSK‐3β/β‐catenin signaling, thereby promoting the malignant phenotype of PDAC. Finally, the coordination of ZNF263 and RNF126 promotes subcutaneous tumor size and distant liver metastasis in vivo. ZNF263, as an oncogene, promotes proliferation, drug resistance and EMT of PDAC through transactivating RNF126.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3